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FIRST FUNDAMENTAL AXISYMMETRIC PROBLEM

OF THERMOELASTICITY FOR A COMPRESSED SPHEROID

WITH A CONCENTRIC SPHERICAL CAVITY

UDC 539.3S. S. Kurennov and A. G. Nikolaev

An axisymmetric boundary-value problem of thermoelasticity for a compressed spheroid with a con-
centric spherical cavity is studied by the generalized Fourier method. The problem is reduced to an
infinite system of linear algebraic equations with the Fredholm operator under the condition that the
boundary surfaces are not crossed. Results of a numerical analysis of stresses in the case of load-free
boundary surfaces in the presence of a temperature field caused by a constant temperature distribution
on the boundary surfaces are presented.
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The fundamental boundary-value problems of the theory of thermoelasticity for a region bounded by spheroid
and sphere surfaces were studied by the generalized Fourier method (GFM) in the absence of a thermal field [1].
This method is based on the use of theorems of addition of basis solutions of the Lamé equation for different
canonical simply connected regions [2]. In the present work, we study the stress-strain state of a spheroid with a
spherical cavity with allowance for thermoelastic strains caused by the action of an arbitrary axisymmetric steady
temperature field. To solve this problem, the GFM for thermoelastic problems for multiply connected regions
bounded by the surfaces of a sphere and a compressed spheroid was developed. The GFM for solving multiply
connected thermoelastic problems was first developed in [3] for regions bounded by the surfaces of a hemisphere
and a sphere. Results of the numerical analysis of stresses for various geometric parameters of the problem are
reported in the present paper.

1. We introduce co-directed spherical (r, θ, ϕ) and compressed spheroidal (ξ, η, ϕ) coordinate systems fitted
to the centers of the boundary surfaces. These coordinate systems are related through the formulas r sin θ =
c cosh ξ sin η and r cos θ = c sinh ξ cos η, where c is a spheroid parameter. The equations r = R and ξ = ξ0 define
the boundary surfaces. The temperature T on the surface of the sphere and spheroid is set in the form of generalized
Fourier series. The forces on the boundary surfaces are assumed to be known. The temperature distribution and
the stress-strain state are determined by solving the following uncoupled steady problem of thermoelasticity:

∇2T = 0; (1)

∇2U +
1

1− 2σ
∇(∇U) =

2(1 + σ)
1− 2σ

α∇T ; (2)

T (R, θ) =
∞∑

n=0

anPn(cos θ); (3)

T (ξ0, η) =
∞∑

n=0

bnPn(cos η); (4)
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FR(R, θ) =
2∑

j=1

∞∑
n=0

vj
nP 2−j

n (cos θ) ej ; (5)

Fξ(ξ0, θ) =
2∑

j=1

∞∑
n=0

wj
nP 2−j

n (cos η) ej . (6)

Here T is the temperature field, U is the vector of thermoelastic displacements, σ is Poisson’s ratio, α is the
coefficient of linear thermal expansion, Pn(x) is the Legendre function, Fξ and FR are the vectors of forces on
the surfaces of the spheroid and sphere, respectively, and {ej}2j=1 is the basis of the cylindrical coordinate system
(eρ = e1 and ez = e2).

The forces generated by the vector of thermoelastic displacements on an area with the normal vector n are
determined as

F = 2G
( σ

1− 2σ
n div U +

∂U

∂n
+

1
2

(n× rotU)− 1 + σ

1− 2σ
αTn

)
, (7)

where G is the shear modulus.
The solution of the axisymmetric heat-conduction problem (1), (3), (4) is sought in the form of superposition

of the spherical and spheroidal solutions

T =
∞∑

n=0

C1
n

(R

r

)n+1

Pn(cos θ) +
∞∑

n=0

C2
n

Pn(iq)
Pn(iq0)

Pn(cos η), (8)

where C1
n and C2

n are unknown coefficients, q = sinh ξ, and q0 = sinh ξ0.
With the use of the GFM, the heat-conduction problem reduces to an infinite system of linear algebraic

equations

C1
n + Rn

n∑
k=0

C2
k

Pk(iq0)
Ak

n = an,

Qn(iq0)
∞∑

k=n

C1
kRk+1Bk

n + C2
n = bn (n = 1, 2, . . .),

(9)

where Ak
n and Bk

n are coefficients in addition theorems reported in [4].
The solution of the inhomogeneous differential Lamé equation (2) is sought in the form of the sum of the

general homogeneous solution U0 and the partial inhomogeneous solution. Since the right side of Eq. (2) depends on
temperature, which, according to (8), can be represented as the sum of two components (spherical and spheroidal),
we seek the partial solution of Eq. (2) in the form of the sum of two solutions corresponding to the spherical (UT

1 )
and spheroidal (UT

2 ) components of temperature:

U = U0 + UT
1 + UT

2 .

The general solution of the homogeneous Lamé equation is sought in the form of superposition of external
spherical and internal spheroidal basis solutions

U0 =
2∑

s=1

( ∞∑
n=0

as
n

Rn+1

n!
W +

s,n +
∞∑

n=0

bs
n

1
Pn(iq0)

U−s,n

)
,

where as
n and bs

n are unknown coefficients; W±
s,n and U±s,n are the axisymmetric variants of the general basis solutions

of the Lamé equation for the sphere and compressed spheroid, which were constructed in [5] (the solutions for a
compressed spheroid are obtained from the solutions for an extended spheroid by substituting ξ+ iπ/2 for ξ and −ic

for c); the superscripts plus and minus denote the external and internal solutions, respectively.
The partial solution of the inhomogeneous Lamé equation (2) corresponding to the spherical component of

temperature is sought in the form

UT
1 = ∇r2

∞∑
n=0

αn
n!

rn+1
Pn(cos θ).

The unknown coefficients αn are determined by substituting UT
1 into (2):
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αn = α
1 + σ

2− 2σ

C1
n

1− 2n
.

The forces on the sphere surface generated by UT
1 and the spherical component of temperature (8) are found by

formula (7) with the vector er = e1 sin θ + e2 cos θ taken as the normal vector. After transformations, we obtain

F T
1 (R, θ) = 2Gα

2∑
j=1

∞∑
n=0

( 1 + σ

2(1− σ)
τ j
11,n −

1 + σ

1− 2σ
T j

11,n

)
P 2−j

n (cos θ)ej ,

τ j
11,0 = C1

0ω1j
11,0 + C1

1ω1j
11,1, ωj

11,n =
C1

n−1

1− 2n
ω1j

11,n−1 −
C1

n+1

1 + 2n
ω2j

11,n+1 (n > 1),

ω1j
n =

δj1 + nδj2

2n + 1

( 2σ

1− 2σ
(1− 2n) + n(n− 1)− n(n + 1)

2n + 1

)
,

ω2j
n =

−δj1 + (n + 1)δj2

2n + 1

( 2σ

1− 2σ
(1− 2n) + n(n− 1) +

n2

2n + 1

)
,

T j
11,0 = δj1C

1
0 +

C1
1

3
, T j

11,n =
1 + nδj2

2n + 3
C1

n+1 +
nδj2 − δj1

2n− 1
C1

n−1 (n > 1),

where δkj is the Kronecker delta.
To satisfy the boundary conditions on the spheroid surface (6), one has to find the expansions into the

generalized Fourier series of forces generated by UT
1 and the spherical component of temperature (8) on the spheroid

surface. For this purpose, UT
1 and the spherical component of temperature, written preliminary in the spheroidal

coordinate system with the use of addition theorems described in [2, 5], are substituted into (7), where the external
normal of the spheroid eξ = h(qeθ sin η + pez cos η) is used as the normal [h = (q2 + cos2 η)−1/2 and p = cosh ξ].
As a result, we obtain

F T
1 (ξ0, η) = 2αGh

2∑
j=1

∞∑
n=0

( 1 + σ

2− 2σ
τ j
12,n −

1 + σ

1− 2σ
T j

12,n

)
P 2−j

n (cos η)ej ,

τ j
12,n =

2σ

1− 2σ
(qδj1 + pδj2)ω

1j
12,n + cSj

1,n + 2Sj
2,n,

ω1j
12,0 = δj1Q0(iq)Ω1

12,0 +
1
3

Q1(iq)Ω1
12,1, Ω1

12,n =
n∑

k=0

C1
kRk+1Bn

k ,

ω1j
12,n =

δj2n + 1
2n + 3

Qn+1(iq)Ω1
12,n+1 +

δj2n− δj1

2n− 1
Qn−1(iq)Ω1

12,n−1 (n > 1),

Sj
1,n = ω2j

12,n − 2pΩ2
12,n

(
qQj−2

n (iq)− p
∂Qj−2

n (iq)
∂ξ

)
, Ω2

12,n =
n∑

k=1

C1
k−1R

k

3− 2k

(g+)n
k

(k − 1)!
,

β1
n =

n + 1
2n + 1

, β2
n =

n

2n + 1
, γj

12,0 =
2∑

n=1

βj
nΩ2

12,n

∂Qj−2
n (iq)
∂ξ

,

γj
12,n = βj

n+1Ω
2
12,n+1

∂Qj−2
n+1(iq)
∂ξ

+ β3−j
n−1Ω

2
12,n−1

∂Qj−2
n−1(iq)
∂ξ

(n > 1),

ω2j
12,0 =

1∑
n=0

γj
12,nβj

n, ω2j
12,n = γj

12,n+1β
j
n+1 + γj

12,n−1β
3−j
n−1,

Ω3
12,n =

n∑
k=0

C1
k

1− 2k
Rk+1Bn

k , ω3j
12,n = qQj−1

n (iq) + pQ2−j
n (iq),
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Sj
2,0 = δj1ω

3j
12,0 + ω3j

12,1/3,

Sj
2,n =

δj2n + 1
2n + 3

ω3j
12,n+1 +

δj2n− δj1

2n− 1
ω3j

12,n−1 (n > 1),

T j
12,0 = (δj1q + δj2p)(δj1Ω1

12,0Q0(iq) + Ω1
12,1Q1(iq)),

T j
12,n = (δj1q + δj2p)

(δj1 + δj2n

2n + 1
Ω1

12,n+1Qn+1(iq) +
δj2(n + 1)− δj1

2n− 1
Ω1

12,n+1Qn+1(iq)
)

(n > 1).

Here (g±)k
n are the coefficients in vector theorems of addition of the general basis solutions of the Lamé equation

for the sphere and compressed spheroid, which were obtained in [2, 5].
We seek the partial solution of the inhomogeneous Lamé equation (2) corresponding to the spheroidal

component of temperature (8) in the form

UT
2 =

∞∑
n=0

βnzU−1,n.

The coefficients βn are determined by substituting UT
2 into the Lamé equation (2):

βn = α
2− 2σ

4σ − 3
C2

n

Pn(iq0)
.

The generated forces are found by formula (7) with eξ used as the normal. As a result, we obtain

F T
2 (ξ0, η) = 2Gαh

2∑
j=1

∞∑
n=0

(2− 2σ

4σ − 3
τ j
22,n −

1 + σ

1− 2σ
T j

22,n

)
P 2−j

n (cos η)ej ,

τ j
22,0 =

C2
0ω1j

22,0

P0(iq0)
+

C2
1ω1j

22,1

P1(iq0)
, τ j

22,n =
C2

n−1ω
1j
22,n−1

Pn−1(iq0)
+

C2
n+1ω

2j
22,n+1

Pn+1(iq0)
,

ωj1
22,n =

1
2n + 1

(
χ1

n(n + δj1)− (δj1 − δj2)
σ

1− 2σ
qPn(iq)

)
,

ωj2
22,n =

n + δj2

2n + 1

(
χ2

n + (δj1 − δj2)(n + δj1)
qP−1

n (iq)
2

)
,

χ1
n =

(q2

p
(n + 1)− p

2

)
P−1

n (iq) + i
q

p
(n + 1)P−1

n+1(iq),

χ2
n = −qP 1

n(iq)− 1− σ

1− 2σ
pPn(iq), T j

22,0 = (δj1q + δj2p)
(
δj1C

2
0 +

1
3

C2
1

)
,

T j
22,n = (δj1q + δj2p)

(δj1 + δj2n

2n + 3
C2

n+1 +
δj2n− δj1

2n− 1
C2

n−1

)
(n > 1).

Using the addition theorems, we can write the forces on the sphere surface, which correspond to UT
2 and

the spheroidal component of temperature, can be written as

F T
2 (R, θ) = 2Gα

2∑
j=1

∞∑
n=0

(2− 2σ

4σ − 3
τ j
21,n −

1 + σ

1− 2σ
T j

21,n

)
P 2−j

n (cos θ)ej ,

ωj
21,0 =

1∑
k=0

RkΩ1
21,kω2j

21,k,

τ j
21,n =

Rn−1

(n− 1)!
Ω1

21,n−1ω
2j
21,n−1 +

Rn+1

(n + 1)!
Ω1

21,n+1ω
1j
21,n+1,

ωj1
21,n =

σ

1− 2σ

δj2 − δj1

2n + 1
+

( n

2n + 1
+

1
2n + 2

)n + δj2

2n + 1
,
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ωj2
21,n =

n(n + 1)
2n + 1

δj1 − δj2

2n + 2
+

( 1− σ

1− 2σ
+ n

)n + δj1

2n + 1
,

Ω1
21,n = −

∞∑
k=n

C2
k

Pn(iq0)
(g−)n

k ,

T j
21,0 = δj1ΩT

21,0 +
ΩT

21,1

3
, ΩT

21,n =
∞∑

k=n

C2
k

Pn(iq0)
An

k ,

T j
21,n =

1 + nδj2

2n + 3
Rn+1ΩT

21,n+1 +
nδj2 − δj1

2n− 1
Rn−1ΩT

21,n−1 (n > 1).

Satisfying the conditions on the boundary surfaces (5) and (6), we obtain an infinite system of linear algebraic
equations with respect to the unknown coefficients as

n and bs
n:

2∑
i=1

(
si

n,ja
i
n +

n∑
k=0

ti,jn,kbi
k

)
= A1

n,j ,
2∑

i=1

( ∞∑
k=n

si+2,n
n,j ai

n + ti+2
n,j bi

n

)
= A2

n,j (10)

(j = 1, 2, n = 1, 2, . . .).

The coefficients of system (10) are found from the coefficients of a similar system for an extended spheroid,
which are given in [1], by substituting a = 0 and replacing ξ by ξ+iπ/2 and c by −ic. As in [1], it can be shown with
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the help of the estimates of [6] that the operators of systems (9), (10) are the Fredholm operators if the boundary
surfaces are not crossed, which allows one to solve the system by the reduction method.

In system (10), the right sides have the form

A1
n,j = vj

n − α
1 + σ

2(1− σ)
τ j
11,n − α

2− 2σ

4σ − 3
τ j
21,n + α

1 + σ

1− 2σ
(T j

11,n + T j
21,n),

A2
n,j = wj

n − α
1 + σ

2(1− σ)
τ j
12,n − α

2− 2σ

4σ − 3
τ j
22,n + α

1 + σ

1− 2σ
(T j

22,n + T j
12,n).

2. The numerical analysis of the problem was performed for the following parameters: R = 1 and σ = 0.25.
The boundaries are load-free; the temperature of the inner surface (r = R) equals unity, and the temperature of
the outer surface ξ = ξ0) equals zero (Fig. 1).

Figure 2a shows the distributions of thermoelastic stresses on areas normal to er in the focal plane of the
spheroid. Figure 2b shows the distributions of thermoelastic stresses on areas located on the z axis and normal
to ez. Curves 1–4 refer to the lengths of the major and minor axes of the spheroid (2.0 and 1.5), (2.5 and 1.5),
(10/3 and 2.0), and (10/3 and 2.5), which are obtained for the following values of ξ0 and c: (1.32 and 0.973), (2.0
and 0.693), (2.667 and 0.693), and (2.205 and 0.973).

The results of studying the stress-strain state show that the character of stress distribution depends on the
distance between the boundary surfaces in a chosen direction, and the values of stress are minimum both in the
case where the spheroid size is close to the sphere size (curves 1 and 2) and in the case where the spheroid size is an
order of magnitude greater than the sphere size. The latter can be explained by the smaller influence of the outer
surface on the stress-strain state in the vicinity of the sphere: the spheroid does not affect the sphere.
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